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Abstract—This paper examines grain boundary sliding as a mechanism for nucleation and growth of
microeracks in polyerystalline $2 ice, under uniaxial compression. The loading rate is fast enough so that
the polycrystal response is almost linear. A unit cell model is set up and the resulting boundary value
problem solved using the finite element method. Simulations show that by allowing grain boundary sliding
a defect originating at the triple point grows stably, reaches a critical length and then propagates unstably
to the neighboring tripte point. The influence of the elastic mismatch between neighboring grains on
microcracking stress is not strong. The stress causing microcrack growth is found to be inversely
proportional to the square root of the grain size. If no grain sliding takes place, and only the ¢lastic
anisotropy mechanism operates, the stresses required for microcrack nucleation and growth are
unrealisticly high; the resulting microcracks are also too short.

1. INTRODUCTION

The deformation of polycrystalline ice is highly
non-linear and depends on the loading rate and
temperature, as well as on the granular micro-
structure, While at low loading rates (less than
~107%s~! in compression) ice is ductile, it fails
brittlely at higher rates and lower temperatures.
The maximum stresses occur in the ductile-to-
brittle transition regime. Under compression, microc-
rack accumulation is observed in this regime.
Experimental evidence in [1] suggests two indepen-
dent families of microcracks which nucleate in poly-
crystalline ice. The first microcrack family is
independent of creep strain, while the second is
dependent on it. '

The nucleation of microcracks, which are depen-
dent on crecp strain, has been attributed to the
dislocation pile up mechanism [2,3] and to grain
boundary sliding [4, 5]. Both these mechanisms were
postulated for low strain rate loading where the
polyerystal behaves in a ductile manner.

The elastic anisotropy mechanism has been postu-
lated in Refs [3, 6] to be responsible for the formation
of the strain-independent microcracks. This mechan-
ism was thought to be dominant during high strain
rate loading. More recently however, the stress fields
which arise in the grains due to the actual anisotropy
found in ice was analyzed in [7]. In this reference it
was concluded that the mismatch in elastic moduli
between neighboring grains in ice, under plane strain
conditions, is not high enough to form precursor
cracks.
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This paper conducts a theoretical investigation of
microcrack nucleation and growth in fresh water
polycrystalline S2 ice at the high end of the ductile-to-
brittle transition where the response is almost linear.
Since the elastic anisotropy mechanism acting alone
is not strong enough to nucleate precursor cracks,
grain boundary sliding is investigated as a possible
cause of microcracking. Only uniaxial compressive
loading is considered. The aim is to predict at what
stress microcracks nucleate and grow. The role of
grain anisoiropy and the effect of grain size on this
stress is studied. '

Polycrystalline ice, even that prepared in the lab-
oratory, is a porous materiat. The bubble size and
density is a function of freezing rate and the bubble
shape can be approximated by cylinders or prolate
spheroids [8]. Reference [9] studies isotropic polycrys-
talline ice with equiaxed grains prepared in the lab-
oratory, and reports average bubble diameters of 0.06
and 0.12 mm for grain sizes between | and 2 mm and
2 and 7.3 mm, respectively. The bubble density is
2000 and 350 bubbles/em® respectively. The nucle-
ation and growth of a microcrack from a circular hole
in an isotropic material is modeled in [10]. The
minimum nucleation stress predicted by [10] under
uniaxial compression using homogenized properties
of ice is an order of magnitude larger than observed
experimentally. At this stress level the microcrack
length is of the order of 0.18 bubble diameters, viz.
0.018 mm, as compared with experimentally observed
microcracks which are of the order of the grain size
[11], viz. of the order of millimeters. The effect of
including the local inhomogeneity of the ice grains, as
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well as grain boundary sliding, on a microcrack
originating from a bubble, is studied in this paper.

The stresses arising in a polycrystal array are
studied using a repetitive unit cell model. The concept
of the unit ¢ell is well known; the work reported in
[12] on ceramics and in [7] on saline ice is closest to
this study. The major difference between this work
and these references is the modeling of grain bound-
ary sliding. Of course differences in the size and
physical details of the unit cell also exist; the present
paper models anisotropic grains and air bubbles
located at the triple points.

The organization of this paper is as follows. The
unit cell model is developed in Section 2: the physical
details of the unit cell are described and the motiv-
ation for the grain boundary sliding mechanism is
given. Section 3 formulates the unit cell as a bound-
ary value problem, describes the method of analysis
of the boundary value problem, and states the cri-
terion for microcrack nucleation and growth. The
discussion of the results is presented in Section 4 after
first describing the material parameters, The effects of
preventing grain boundary sliding and the question of
simultaneous coexistence of grain boundary sliding
and elastic behavior of the polyerystal is addressed in
Section 4.2. The effects of grain anisotropy and grain
size on the stresses required for microcrack nucle-
ation and growth are discussed in Sections 4.2 and 4.3
respectively.

2. THE UNIT CELL MODEL

The whole domain is subdivided into repetitive
unit cells (see Fig. 1). The response of the entire
domain to far field loading can be obtained by
analyzing only the unit cell. In order to define the
unit cell, an assumption has to be made on the size
of the repetitive cell. This size fixes the number of
grains and hence the number of grain orientations
modeled.

2.1. Physical details of unit cell

In this paper the grain geometry is idealized by
hexagons. The unit cell is made up of three grains
with orientations {,, {,, and {.; see Fig. 1 and for
details Fig. 2(a). The assumption of modeling only
three grain orientations is not as restrictive as it first
appears, since: (i} the individual ice crystals exhibit
weak elastic anisotropy, and (ii} the effect of an-
isotropy on microcracking is not strong (see details in
Section 4.3).

The unit ¢ell is assumed to be under plane stress
conditions. This is consistent with the microstructure
of transversely isotropic S2 ice where the cell lies in
the plane of polycrystal isotropy. )

Observations show that bubbles have a tendency to
concentrate on grain boundaries, especially at geo-
metric discontinuities. Tn the unit cell, ¢ylindrical air
bubbles are located at triple points in the interior of

the cell (at TP1 and TP2 in Fig. 3). These bubbles
extend through the thickness of the cell.

The ice surface contains flaws in the form of steps,
pits and ledges. The steps can have a depth ranging
from 0.1 to 4 um [13]. Such flaws are likely to be
present on the bubble surface and might nucleate into
microcracks. The details of the triple point TPI
containing a bubble with a microcrack are shown in
Fig. 2(b). At the start of microcracking, the micro-
cracks are far apart. Thus only 2 single microcrack
emanating from TPl is considered in this paper.

2.2, Grain boundary sliding

Grain boundaries are zones of finite volume
where the material is highly disordered when com-
pared with the material inside the grains. The grain
boundary thickness has been predicted [14] to be
of the order of a fraction to a few microns in
thickness and to be dependent on temperature and
salinity. Due to the disorder, the entropy of the
grain boundaries is higher than that of the grain.
Hence the elastic stiffngss moduli of the grain bound-
ary zone are expected to be lower than those of the
grain.

Naturally occurring polycrystalline ice s typically
found in the temperature range 0°C = T = —40°C.
This corresponds to a homologous temperature
range of 12 Ty = 0.85. The behavior of the grain
boundary zone in polycrystalline ice is very complex
and its pature is not fully understood. The grain
boundary zone is sensitive to temperature. There is

HEXAGONAL GRAIN

UNIT CELL

Fig. 1. The pollycrystalline domain of hexagonal grains
showing the mosaic of repetifive unit cells.
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Fig. 2. (a) The unit cell model. (b) Detail of a triple point junction located within the unit cell.

experimental evidence of a liquid, or a quasi-liquid,
layer on the grain boundaries at temperatures above
—10°C (see the references in the review article [15]).
Such a layer would promote grain boundary sliding.

From internal friction experiments on single and
polycrystalline ice, a relaxation phenomenon associ-
ated only with grain boundaries was deduced in [16].
By measuring the Young’s modulus, Gold and
Traetteberg {17] found two active relaxation pro-
cesses both in columnar grained and in isotropic
equiaxed polycrystalline ice. The first process has a
relaxation time of the order of 1s, while the second
is associated with a much longer time period. These
authors observed that the time dependence of
Young’s modulus for times greater than 0.1s is

dominated by the second, i.e. slower, relaxation
process.

The duration of high strain rate tests, where the
response of the polycrystal is almost linear and the
sample fails in a brittle manner, is typically less
than a few seconds. Brittle behavior is observed
when the applied strain rates are in the range
10-3s~ '€ €107 57! (see for example the work of
Schulson and co-workers). For these short durations,
the first relaxation phenomenon observed in [16] must
be active; this relaxation process might be associated
with grain boundary sliding. During the progress of
this work it has come to the authors’ attention that
visco-elastic grain boundary sliding has been ob-
servedaté = 107%s tand ¢ = 10735 fat T = —10°C

/%6 A
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by Picu and Gupta [18]}. The seemingly contradic-
tory simultaneous occurrence of grain boundary slid-
ing and linear response of the polycrystal will be
explored in Section 4.2 after the unit cell model has
been fully described.

In the unit cell the grain boundary region can be
modeled as a linear visco-elastic material. However,
since the material parameters of the grain boundary
are not known, and for simplicity, the grain bound-
aries are assumed to be fully relaxed. Thus in the
model the grain boundaries cannot transfer shear
stresses. This assumption should underpredict the
stresses that cause microcrack nucleation and growth.
Further, since the grain boundary thickness (order of
micrometers) is much smaller than the dimensions of
the grain {order of millimeters), and since the shear
resistance of the grain boundary is assumed to be
negligible, the grain boundary thickness is ignored in
the unit cell model.

3. MICROCRACK NUCLEATION AND GROWTH

In order to determine the microcrack nucleation
stress, the stresses required to extend the microcrack
and the path of the microcrack, the spatial distri-
butions of stress, strain and displacement, within
the unit cell, are required. The geometry of the unit
cell has already been defined. In this section the unit
cell boundary value problem is first formulated and
then solved using the finite elemeni method. The
criterion for crack nucleation and growth is then
presented.

+These authors attribute stable microcrack nucleation to
grain boundary skiding.

< \&//”G

Fig. 3. A schematic representation of the unit cell with rollers on the grain boundaries.

3.1. Formulation and analylsz"s of the unit cell boundary
value problem

The polyerystalline aggrepgate (see Fig. 1) is sub-
Jjected to uniaxial far field stress, Z,, with no confine-
ment 2,; = ¢ and ne shear ;, = 0. Advantage can be
taken of the repetitive nature within the aggregate;
only a single unit cell needs to be considered.

Equilibrium within the cell is automatically met by
satisfying the principle of virtual work

jée-odA=J-5u-TdS (1)
4 5

where d¢ and ¢ are the virtual strain and stress tensors
at a point, du is the virtual displacement and T is the
surface traction. Integration is performed over the
entire unit cell area, 4, and over the entire boundary
length S. The elastic stress—strain relation for a grain
is

o =C,(()e 2

where C,({) is the elastic stiffness tensor of a single
grain in the global reference frame and it depends on
the basal plane orientation, { [see Fig. 2(b}]. Substi-
tuting equation (2) into equation (1), the principle of
virtual work to be satisfied, is

j 8¢  [C,(¢)e) da =j Su-Tds. 3)

Traction boundary conditions corresponding to far
field loading are applied to the sides of the unit cell.
Reference labels of points are shown in Fig. 3.

Along sides C1-C4 and C4-C3

=0, T,=-Zy. {4)
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Along sides C1-C2 and C2-C3
= 0, Tz = Zzz- (5)

In addition the following displacements are pre-
scribed:

Point Cl, the center of grain A, is pinned
u =u, =0. (6)
Displacement of Point C3
i, = Q. €

Free grain boundary sliding is allowed by specify-
ing rollers on the grain boundaries (see Fig. 3). These
rollers cannot transfer shear tractions but can trans-
fer both tensile and compressive normal tractions.
Note that Fig. 3 is schematic; the grain boundary
thickness is assumed to be zero. The free sliding
conditions on the grain boundaries located on the
perimeter of the cell are specified below.

The boundaries of the unit cell have to be con-
strained to maintain compatibility with neighboring
cells. To this end, length measures along the per-
imeter of the cell are defined (see Fig. 3): , and r,
from Point C2, and s, and s, from Peints C1 and C3,
respectively. Compatibility is maintained within grain
A if:

In the ranges 0 r<aand 2a <r <30

u(ry} — w4 (C2) = u; (5,) — 1, (C1)

() — 1, {C2) = 1, (5,) — u,(C1). 8)
In the ranges 0 <, <a and 2a €1, < 3a

U (ry) — 4 (C2) = 1y (55) — 44, (C3)

{77} — 4, (C2) = u, (55) — 0, (C3). 9)

To allow slip on grain boundaries found on the
perimeter of the cell, and to maintain compatibility
with neighbors, the following constraints on defor-
mations are required:

In the range a < r, <24

“2("1) —1:(C2) — (5} + w, (C1)
=i3[ul(m—ul(cz)—ul(som(cn]. 10y

NG

In the range @ <r, < 2a

t(r2) — 1(C2) — 1, (8,) + 2,(C3)

l
= % [t (ry) ~ 2, (C2) — 1, (5,) + w0, (C3)). (A1)
The average axial strain, &,, experienced by the
unit cell is defined as

_ 1 3“”2(351'*52)“‘“2(’1)(i
=— r
b ba o 3a —r :
1 3a 3 — —
T w(3a — ) ”2("2)dr2 (12)

6a |, 3a—r,

where (-) is the argument of the function u,. The
displacement component, u, is defined on the cell
perimeter and the length measures r ahd s can be
interchanged. The integration is performed numeri-
cally and Points Cl and C3 are excluded.

The finite element method is used to solve the
boundary value problem defined by equation (3)
subjected to boundary conditions given in equations
(4)-(11). A typical mesh containing 388 elements is
shown in Fig. 4(a). Figure 4(b) shows the refined
mesh around the bubble containing the microcrack.
The discretization is conducted so that the elements
do not intersect the grain boundaries. The mesh
contains standard eight node isoparametric elements.
At the crack tip eight, singular, quarter-point el-
ements are used. Full 3 x 3 Gauss integration is
performed. The discretization ensures that a node
found at a distance r, from C2 will have a counterpart
at the same distance s, from C1; the same applies to
r, and s,.

The level of discretization, and the imposition
of the boundary conditions on the unit cell *have
been checked as follows. First, the finite element
solution with no grain boundary sliding and isotropic
homogeneous grains compares well with the
known analytical solution of the stress distribution
around a circular hole. In the numerical solution,
although the domain contains multiple holes, their
diameter is small compared to the distance between
them and hence their effect on ¢ach other is negligible.
Second, when grain boundary sliding is allowed,
the compatibility of deformations on the boundary

R R I T

-8 -6 -4 -2 0 2 4 6 8

.15 -1 <05 ] 0.5 i L5

Fig. 4. (a) Finite element discretization of the unit cell. (b)
Detail of finite element discretization around the bubble and
the microcrack.
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of neighboring unit cells has been checked. Finally,
for a symmetric distribution of grain orientations
about the line C2-C4, and for a symmetric far field
loading, the symmetry of the solution has been
verified.

3.2. Criterion for microcracking

The nucleation of the flaw located at the triple
point and the propagation of the resulting microcrack
occurs when the energy released in forming the crack
is greater than the surface energy of the material.
Even though the far field stress is uniform, locally the
stress state is not homogeneous. This is due to grain
anisotropy and discontinuities such as grain bound-
aries. Further the material resistance to cracking is
not homogeneous; the fracture surface energy of the
grain boundary is less than that of the grain. Thus,
in general, the flaw and the microcrack are under
mixed Mode I and Mode 11 loading, and microcrack
extension is not necessarily collinear with the original
crack.

Path independent integrals can provide a measure
of the amount of energy released in extending a crack.
Such an energy release criterion can be stated as
[19, 20]: the crack will grow in the direction in which
the components of the energy release vector equals
the fracture surface energy. It has been shown in [21]
that the energy release rate per unit crack tip exten-
sion in two mutually perpendicular directions, x and
y is given by

Jx=§; Udy—an-illd[‘
r ox

(13)

Jy=—§; de+o'n-a—“dl"
r dy

where U is the strain energy density, n is the outward
unit normal to the counter clockwise integration
path, I', and dI" is the arc length along I'. Note that
J, is the conventional J integral [22].

The components of the J vector can be combined
to give the energy released in a direction S (from
Fig. 24.3 in [20], and [19]

Y(B) = J, cos(B) + J, sin(f) (14)

where f is measured from the x-axis. The crack will
extend in a direction § when

where y(ff) is the fracture surface energy; it depends
on whether the crack is extending along the grain
boundary or into the grain.

The components of the path independent J vector,
equation (13), are calculated numerically from the
finite element analysis. Three different paths are
considered in computing the J components. All paths
are taken through the Gauss points and pass through
the centers of the elements. In this paper, the vari-
ation of J in most cases is less than 1%; in the worst
case the variation is 4.5%.

In the simulations of microcracking, a constant
corpressive uniaxial far field stress, Z,,, is applied
to the polycrystal. The microcrack is extended, and
the corresponding J vector computed. The result is
#(B) as a function of crack length, I The stress
required for microcrack nucleation and propagation,
X*, is obtained by scaling the applied far field stress

as follows
¥ 12y(8)
x Loy —g(,B) .

The above analysis predicts the stress, =¥, required to
realize a microcrack of length, /, as well as providing
information on the stability and trajectory of the
microcrack.

(16)

4. SIMULATION OF NUCLEATION AND GROWTH
OF A MICROCRACK

The effects of grain boundary sliding, grain an-
isotropy, and grain size on microcrack nucleation and
growth are studied in this section. The applied load-
ing rate is assumed to be sufficiently high so as to
correspond to the brittle end of the ductile-to-brittle
regime. Compressive stresses and strains have posi-
tive values in this section.

4.1. Material parameters

The material parameters used in all numerical
simulations are identified here. Two groups of ma-
terial parameters are required: (i) the elastic stiffness;
and (ii) fracture surface energies.

The dynamic elastic stiffness of a single ice crystal
was measured using Brillouin spectroscopy [23]. At
—16°C Ref. [23] reports the single crystal stiffness to

2y(8) = 4(p) (15) be :
¢ 15.010 5765 5.765
13929 7.082 0
13.929
Clil=0)= 3.4235 GPa an
SYmL. 3.014
3.014
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where x, — x, 15 the isotropy plane in the transversely
isotropic crystal; the ¢-axis lies in the x, direction
(¢ =0°). The above elastic constants are mildly tem-
perature dependent. The following empirical relation-
ship for the stiffness at temperature T'is obtained [23]

(1 —1.418 x 10731

=C,(T,
ClT) =l rcf)(1—1.418>< 10737 )

(18)

where T, is the temperature at which C, is known
(Te = —16°C), and all temperatures are measured in
°C. Equation (18) shows that between 0 and —20°C
the variation in dynamic stiffness of a single crystal
is practically negligible.

Reducing the single crystal stiffness to plane stress
conditions (g, =0) with x, —x, being the plane of
interest, the following dynamic single crystal plane
stress stifiness is obtained

12.624 2832 0
C({=0%=| 2832 10328 0 GPa. (19
0 0 3.014

The surface energies for ice at temperatures close
to 0°C were determined from experimental measure-
ments in [24]. The following surface energies are
reported:

Grain boundary yg, = 0.065 J/m?
Solid vapor, or crystal y,, = 0.107 J/m?.

Experiments reported in [25] on single crystals of
ice at —196°C show that microcracks do not have
any preferred orientation and do not follow any
particular crystallographic plane. From this obser-
vation, the varation of the surface energy with
orientation within the crystal will be ignored in the
simulations. Further, the surface energies reported in
[24] might be temperature sensitive; currently no data
is available on this sensitivity. Since surface energy is
proportional to stiffness, and the variation in stiffness
in the range 0°C to —20°C is negligible [equation
(18)], the surface energies in this range are assumed
to be constant. This is a strong assumption since the
properties of the grain boundaries are expected to be
effected by temperature.

4.2. Effect of grain boundary sliding

The assumption of relaxed grain boundaries allows
free slip to occur between grains. Thus no shear stress
can be transferred from grain to grain and this effects
the Young’s modulus of the polycrystal. Reference
[26] idealized the isotropic grains by spheres, and
obtained an analytical solution for the relaxed
Young’s modulus. The results in [26] show that the

+The isotropic microfracture toughness for ice is taken as
K,=40 kPa\/r-nw based on the surface energy reported in
[24] and a homogenized Young's modulus of
E = 9.5 GPa; the bubble diameter, ¢ = 0.1 mam consist-
ent with observations in [9].
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ratio of relaxed to unrelaxed Young's modulus,
Eq/E, is a function of Poisson ratic only; for a
Poisson ratio of 0.33, ER/E =0.64. The effect on
Young’s modulus, of fully relaxed grain boundaries,
in a hexagonal array of grains can be determined
using the unit cell model.

The Young’s modulus of the polycrystal is calcu-
lated from the average quantities:

o

E_22

E= (20)
where the average strain, &, is given by equation
(12). The relaxed Young’s modulus is determined by
leaving the constraint boundaries of the unit cell
unchanged. To determine the unrelaxed Young's
modulus all the rollers on the grain boundaries within
the umit cell are removed. Also, on the perimeter of
the unit cell the sliding constraint conditions given by
equations (10) and (11) are replaced by no sliding
constraints equations (8) and (%).

Simulations show that Eg/E =093 for isotropic
hexagonal grains with a Poisson ratio of 0.33. Ana-
lyzing an anisotropic, non-homogeneous polycrystal
with {3 = —{. and {, = 0, also shows that the differ-
ence between relaxed and unrelaxed modulus is less
than 10%. The amount of relaxation is less than in
[26] because in a hexagonal array, with assumed zero
grain boundary thickness, there is no relative motion
between the grains at each triple point. In reality the
grain boundary layer has a finite volume which is
much smaller than the volume of the crystal. Hence
a compliant grain boundary zone will have only a
small effect on the volumetric average of the overall
elastic moduli. Further, the unit cell model with fully
relaxed grain boundaries, prior to microcrack nucle-
ation, shows linear behavior. These results of a small
reduction in Young’s modulus and linear behavior
(i.c. creep strains insignificant) are consistent with
experimental observations of ice loaded at high strain
rates.

The possibility of a microcrack nucleating from a
bubble located at a triple point surrounded by ran-
domly oriented anisotropic grains with no grain
boundary sliding has been studied. As already men-
tioned, the work in [10] on a circular hole in an
isotropic homogeneous material predicts the mini-
mum nucleation stress to be 11.8 MPat. The maxi-
mum possible microcrack length is approximately
three bubble diameters, which is an order of magni-
tude shorter than typical lengths observed in ice. By
including the bubble and random grain orientations
in the unit cell, a much larger local tensile field
develops around the microcrack under far field uniax-
ial compression. In general the microcrack is under
mixed mode loading. The stresses required to propa-
gate the microcrack so determined, are lower than
those predicted using the expression in [10], but they
are still approximately an order of magnitude higher
{depending on the orientations of the grains) than
experimental observations. The maximum possible
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length of the microcrack is also longer than in the loading on a grain boundary crack. This stress
isotropic homogeneous case, but is still much shorter component is normalized by the far field loading,
than the grain facet. Zyp. A grain size of d =5mm is considered with

The above discussion is reinforced by considering a symmetric. distribution of grain orientations:
the distribution of the stress component o), in (3= —(-=150° and {, =0°. Contour plots of the
the vicinity of the triple point. The stress com- normalized a,,/E,, are shown in Fig. 5. The vari-
ponent o, is considered because it provides Mode I ations of o, /Z,, along the line x =0 are also shown.

(a) 30 T 1T T ] 3.0 e
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Fig, 5a and b
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Fig. 5. Variation of ¢, /Z,; in the vicinity of a triple point, ¢ = 5mm, { = 150°: (a) grain boundary sliding

petmitted and no microcrack present; (b) no grain boundary sliding permitted and no microcrack present;

(c) grain boundary sliding permitted and a microcrack is present; () no grain boundary sliding permitted
and a microcrack is present.

In Fig. 5(a, ) grain boundary sliding is permitted. In Figure 5 shows that by allowing grain boundary
Fig. 5(b, d) no grain boundary sliding is permitted. In  sliding, the stress is concentrated by the hole to a
Fig. 5(c, d) a microcrack emanates from the hole; the  much greater extent than when no sliding is allowed.
microcrack length normalized by the facet length is  The grain boundary sliding mechanism causes a
Ila =0.196. wedging action; at a- triple point, one grain is in
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compression, while the other two are wedged apart
and hence are in tension. This tension persists over
the entire grain boundary when sliding s allowed. On
the other hand, with no grain boundary sliding, o,
soon falls to zero.

It is important to note that the effect of the hole is
local. If a microcrack is present when grain boundary
sliding is allowed [Fig. 5(c)], the tensile stress along
the grain boundary ensures that the crack is open.
Hence the singularity at the crack tip is positive. In
the no sliding case, a small but compressive local g,
stress retards microcrack extension to a point where
noe crack growth is possible. The crack in Fig. 5(d) is
longer than that physically possible for the grain
orientations considered. Hence there is a negative
stress raiser at the crack tip. From Fig. 3(c, d) it can
be concluded that: (1) microcrack formation and
growth does not relieve the tensile stresses within the
grains ahead of the crack tip when grain boundary
sliding is allowed; and (2) when no grain boundary
sliding is permitted, the effect of a local stress concen-
trator is relieved by formation of a short microcrack.
The length of the microcrack is dependent on the
grain anisotropy.

These simulations are further proof (cf. [7]) that the
elastic anisotropy mechanism acting alone is not
strong enough to cause realistic microcracks in poly-
crystalline ice. Hence in all subsequent simulations,
grain boundary sliding is allowed.

4.3. Effect of grain anisotropy

The effect of grain anisotropy on microcracking is
studied by varying the orientation of the grain’s
orthotropic axis, {, with respect to a fixed global
reference frame, and with respect to neighboring
grains. The unit cell model described above allows
arbitrary variation in orientation of all three grains
making up the unit cell. For simplicity, and to reduce
the number of variables, attention is focused on a
symmetric distribution of grain orientations. In par-
ticular the following case is considered: {, =0 and
{p= —{c=1{. The influence of random grain orien-
tations, {4, {z, {¢ is considered elsewhere. Due to the
symmetry of the boundary value problem, in all cases
J,=0 and J, #0. Thus from equation (14) § =0,
% =J, and the microcrack extends along the grain
boundary.

In this section, the mean grain size of 82 is kept
constant at & = 5 mm. The grain size is defined such
that the area of the hexagonal grain is equal to the
area of a circle with a diameter d.

1tThe grain size computed in [27] is based on a uniform
sphere assumption and not on an equivalent area of a
circle as in this paper. If the grain size used in the
simulations, is computed in the same manner as in the
experiment, the new stress range is: 1.55-1.9 MPa.

{Provided the microcrack is longer than the “pop-in™
length,

The variation of the energy released J,, as the
microcrack grows under constant unfaxial far field
compression is plotted in Fig. 6(a). The whole range
of grain orientations is considered: 0° < < 180°.
The microcrack length, /, is normalized by the facet
length, a. The detail of Fig. 6(a) when the microc-
racks are short compared with the bubble radius, is
plotted in Fig. 6(b). Figure 6{(a, b) shows that there
are regions of stable and unstable crack growth; a
positive slope implies unstable crack growth while a
negative slope corresponds to stable crack extension.

The defects located on the bubble surface release
very little energy as they extend. This implies that
they require a large far field compressive stress to
nucleate. Once the nucleation stress is reached how-
ever, the defects grow unstably past the energy release
peak into the stable regions, i.¢. the region with a
negative slope in Fig. 6(b). This is the “pop-in”
length, also present in isotropic homogeneous ma-
terials [10]. The microcrack length increases with
applied far field compression in a stable manner until
the energy well is reached at approximately {/a = 0.5
[see Fig. 6(a)]. At this point the microcrack becomes
unstable once again (the slope is positive), and grows
to the neighboring triple point. Beyond this point, the
direction in which the microcrack extends is dictated
by the energy release criterion, equation (14), and is
beyond the scope of this paper.

A different way to represent the stable and unstable
crack growth is to plot the far field compressive stress
required to propagate the microcrack, versus the
normalized crack length, as done in Fig. 7. Equation
(16) gives the nucleation stress corresponding to the
released energy J,. Figure 7 shows that a minimum
of 1.4-1.7 MPa has to be applied for the microcrack
to extend unstably to the full facet length. Reference
[27] reports tests at —10°C on isotropic equiaxed
granular ice with 4 = S mmt and reports the occur-
rence of the first microcrack at an uniaxial compres-
sive stress range of 2.36-2.99 MPa. The stress range
predicted is lower than observed experimentally
due to the difference in the type of ice modeled and
tested and due to the assumption of no shear stress
transfer across grain boundaries. A more realistic
assumption would be a visco-elastic response of the
grain boundary.

Since the minimum stress occurs at approximately
I/a = 0.5 and shorter cracks are stable?, the origin of
the defect is not critical. Here the original defect is
assumed to be a surface flaw on the bubble, but can
equally well be a decohered region on the grain
boundary observed experimentally in [18].

Figures 6(a,b) and 7 show the effect of grain
orientation on microcracking. In addition the vari-
ation of J, with { is plotted in Fig. 8 for three different
crack lengths. From these figures it is evident that
grain anisotropy does not alter the nature of micro-
crack growth. The anisotropy does effect the length
at which the microcrack becomes unstable, i.e. the
position of the minimum in the energy J,, and creates
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Fig. 6. (a) Variation of energy released, J,, with normalized microcrack length for various grain
orientations. (b) Variation of energy released, J,, for short normalized microcrack lengths and for various
grain orientations.

a band of stresses (or a band of J,) which can cause
microcrack growth. The maximum band width is
41% of the mean J, and 21% of the mean siress
required for microcrack growth. The mean values are
taken at the point where the bands are maximum. It
can be concluded that for a symmetric distribution of
grain orientations within the unit cell, the anisotropy
of the grains does not have a strong effect on the
applied uniaxial compressive stress required to nucle-
ate and propagate the microcrack.

4.4. Effect of grain size

The influence of grain size on the compressive
stress required to nucleate and propagate a micro-
crack is studied in this section. The grain size, d, is
varied in the range typically observed in polycrys-

talline 82 ice: 1mm <4 < 10mm. In addition, the
effect of the grain orientation, {, is also considered.
The bubble diameter, ¢, is scaled linearly with grain
size, from ¢ = 0.1 mm for d = Smm.

The variation of the energy released, J,, with
microcrack length is plotted in Fig. 9 for three
different grain sizes. The curve is drawn through the
mean values of J; error bars indicate the width of the
band produced by varying the grain orientations, {.
From Fig. 9 it can be seen that the trends in J, remain
the same for different grain sizes. Although Fig. 9
shows that for fine grained samples, J, varies very
little with crack length, the applied compressive stress
is inversely related to J, [equation (16)]. Hence the
variation in stress with microcrack length is not
negligible, for all grain sizes. Also, as the grain
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Fig. 7. Variation of applied compressive stress, Z* with normalized microcrack lengths for various grain
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size decreases so the amount of energy released, J,,
also decreases. Thus, the compressive stress required
to propagate the crack increases as the grain size
decreases.

Figure 10 shows the stress required to lengthen the
microcrack as a function of grain size for different
crack lengths. The microcracking stress is pro-
portional to %%,

The effect of grain anisotropy remains the same for
polycrystalline ice of different grain sizes. The maxi-
mum band width is 41% of the mean J, irrespective
of d. Although this percentage is fixed, the magnitude

of the variation in the far field stress is much larger
for smaller grain sizes where the microcracking stress
is large (see Fig. 10). Hence the grain anisotropy
should produce more measurable scatter in microc-
racking stress as the polycrystal becomes fine grained.

The above discussion suggests that in real polycrys-
tal samples, loaded at sufficiently fast rates to ensure
linear stress-strain response, there should exist two
populations of microcracks. The first group of micro-
cracks have lengths in the range 0.1 < //a £0.5. The
second group have lengths equal to, or longer than
the grain facet lengths. References [11, 28] report
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Fig. 8. Variation of energy released, J,, with grain orientation, ¢, for various normalized microcrack
lengths. .
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experimental evidence of stable microcrack extension
until a critical length is reached, at which point the
microcrack growth becomes unstable. Although a
normalized microcrack length is reported, the nor-
malizing length is not the facet length. Further, due
to the relative coarseness of the grains compared to
the specimen size, no conclusion can be reached as to
the fraction of the facet length at which the microc-
racks became unstable.

5. CONCLUSION

This paper examines the grain boundary sliding
mechanism, as a possible cause of microcracking at
moderately high rate of quasi-static uniaxial com-

pression where the response of the polycrystal is
almost linear. Results show that without allowing
relative motion of the grains along the grain bound-
ary, unrealistically high stresses are required to nucle-
ate and propagate a microcrack; in addition the
resulting microcracks are much shorter than those
observed experimentally. By assuming, for simplicity,
free boundary sliding, the stresses required to nucle-
ate and propagate 2 grain boundary microcrack,
become more realistic. Due to the assumption of free
slip, the stresses are under predicted.

Simulations with a unit cell model which allows
variation of grain ormientation and grain size, show
that at first a large stress is required to nucleate a flaw
located at the triple point. The flaw “pops-in” and
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then increases in length with increasing applied com-
pression. When the microcrack extends to approxi-
mately half the facet length it grows unstably to the
neighboring triple point. The effect of grain an-
isotropy is to shift this point of instability and to
produce a band of stresses required to increase the
microcrack length. The maximum band width is
approx. 21% of the mean stress.

Varying the grain size does not change the micro-
crack behavior; the microcrack extends stably after
the “pop-in” length and then becomes unstable. The
stress required to extend the microcrack a fixed
fraction of the facet length is inversely proportional
to the square root of the grain size. The analysis
implies that two populations of microcrack lengths
should exist: (i) microcracks which.are shorter than
about half the facet length; and (i) microcracks
which extend at least over the entire facet length.

The effect of random variation of grain orien-
tations, and the effect of confining the specimen as
well as visco-elastic modeling of the grain boundary
region warrant further investigation,
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